Clusteval logo ClustEval clustering evaluation framework

Which parameter sets lead to the optimal clustering quality?

Please choose a clustering quality measure:
Program Best quality Parameter set Clustering
CLARA 1.0 metric=euclidean
k=3
samples=20
Clustering
Self Organizing Maps 0.436 x=18
y=84
Clustering
Spectral Clustering 0.441 k=14 Clustering
clusterdp 1.0 k=4
dc=0.20895856615320804
Clustering
HDBSCAN 1.0 minPts=3
k=6
Clustering
AGNES 1.0 method=complete
metric=euclidean
k=4
Clustering
c-Means 1.0 k=4
m=3.5
Clustering
k-Medoids (PAM) 1.0 k=4 Clustering
DIANA 0.729 metric=euclidean
k=3
Clustering
DBSCAN 1.0 eps=1.3059910384575502
MinPts=225
Clustering
Hierarchical Clustering 1.0 method=average
k=5
Clustering
fanny 1.0 k=5
membexp=1.1
Clustering
k-Means 1.0 k=5
nstart=10
Clustering
DensityCut 1.0 alpha=0.0384672619047619
K=12
Clustering
clusterONE 0.261 s=75
d=0.8
Clustering
Affinity Propagation 0.398 dampfact=0.845
preference=0.0
maxits=4250
convits=425
Clustering
Markov Clustering 0.261 I=9.412012012012012 Clustering
Transitivity Clustering 0.887 T=0.9977300906414439 Clustering
MCODE 0.665 v=0.2
cutoff=0.7182950711516526
haircut=T
fluff=T
Clustering